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1 Introduction and summary

Recently, Bagger, Lambert [2] and Gustavsson [3] found that a certain class of Chern-

Simons matter system can have maximal supersymmetry in 2 + 1 dimensions and that

it may describe the multiple M2-branes. Their action is distinctive in that the gauge

symmetry is based on a new mathematical framework, Lie 3-algebra. However, it was

soon realized that their constraints on the algebra are too restrictive that the only allowed

3-algebra is so-called A4 algebra which describes the two M2-branes [4].

For the description of larger number of M2-branes, many studies have been made

to generalize the BLG framework.1 The first interesting example was found by three

groups [6–8] which is based on the 3-algebra with a pair of Lorentzian metric generators

u, v and arbitrary Lie algebra generators T i, such that

[u, T i, T j] = if ij
kT

k , [T i, T j , T k] = −if ijkv ,

〈u, v〉 = 1 , 〈T i, T j〉 = δij , (1.1)

where we keep only the nonvanishing 3-commutators and metric components. While the

components associated with the generators u, v become ghosts, they can be removed by a

1Apart from the examples mentioned below, there is also an example based on the 3-algebra with Nambu-

Poisson bracket [5]. This algebra describes the infinite number of M2-branes and realizes the worldvolume

theory of a single M5-brane in the C-field background on a 3-manifold where Nambu-Poisson bracket is

equipped.
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new kind of Higgs mechanism proposed by [9]. After the ghosts are removed, the Chern-

Simons matter system is reduced to the ordinary super Yang-Mills system which describes

multiple D2-branes. Then many studies are undertaken on this Lorentzian BLG model [1,

10, 11]. However, since the correspondence is too exact, the model was realized to be too

simple to describe the full M2-brane dynamics.

Soon after, another 2+1 dimensional Chern-Simons matter system with U(N)×U(N)

gauge symmetry was proposed [12]. While it lacks the manifest N = 8 supersymmetry, it

has many attractive features such as the brane construction, AdS/CFT correspondence,

and an intimate relation with the integrable spin chain. In particular, it gives a description

of M2-branes when the coupling constant N/k (k is the level of Chern-Simons term) is large,

namely in the nonperturbative region. In the perturbative range N/k << 1, it describes

a system where the transverse space of M2-branes becomes C4/Zk with k ≫ 1, which is

getting closer to D2-branes in type IIA string theory.

The models based on the Lorentzian metric 3-algebras [6–8] which was later general-

ized in [1, 11] by including more Lorentzian metric generators (in the following, we call

it ‘L-BLG model’ in short). Nevertheless, they still enjoy unique advantages that they

keep N = 8 supersymmetry as well as SO(8) R-symmetry. Of course, M-theory requires

such symmetry explicitly, so we believe that L-BLG models will be able to provide some

nontrivial information on M-theory.

In this paper, as one of such examples, we examine how U-duality [13] is realized

in L-BLG models.2 It is based on a work [1] where a description of M-theory on higher

dimensional torus T d+1 was given by generalization of 3-algebra with more Lorentzian

metric pairs, say (uA, vA) (A = 0, 1, . . . , d).3 As a generalization of the original model,

we have d + 1 pairs of the ghost fields associated with each (uA, vA). By choosing the

structure of 3-algebra carefully, it has been shown that such ghost modes can be removed

and the system becomes unitary as in the original model. Here, for the simplicity of the

arguments, we will work with a gauged version of L-BLG model [15, 16] where the removal

of the ghosts is exact. In this Higgs mechanism, one has to assign VEV’s to these ghost

fields as

XI
uA

= λIA , ~λA ∈ Rd+1 ⊂ R8 . (1.2)

These VEV’s ~λA, in turn, describe how the transverse directions R8 are compactified on

T d+1. In other words, the Higgs mechanism of L-BLG model produces the Kaluza-Klein

mass associated such compactification. In [1], it was shown that L-BLG model gives a

super Yang-Mills system whose worldvolume is a flat T d bundle on M, where M is the

worldvolume of BLG model. In the section 2 of this paper, we perform a more detailed

analysis with general ~λA and determine the precise relation of the coupling constant, moduli

2The Montonen-Olive duality in ABJM context was discussed in [14]. In their study, the coupling

constants of the super Yang-Mills are restricted to depend only one real variable. In our case, there is no

such limitation.
3Somewhat similar analysis was made on the generalization of the Lorentzian metric [11]. Their analysis

was limited to the finite dimensional cases and does not include the 3-algebra which is the main focus of

this paper.
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of the torus T d, and some R-R flux on Dp-brane worldvolume theory to VEV’s ~λA of L-BLG

model.

These parameters are sufficient to fix all the moduli of D3-branes theory that corre-

sponds to d = 1 case. Indeed, in the section 3, we argue that the action thus derived

reproduces the complete 4-dimensional super Yang-Mills action with θ term. In particular,

Montonen-Olive SL(2,Z) duality [17] is realized by the rotation of the VEV’s,

~λ′A = ΛA
B
~λB , ΛA

B ∈ SL(2,Z) . (1.3)

While we do not claim that we prove the duality symmetry, the simplicity of the realization

is nevertheless remarkable. For d > 1, it is natural to guess that the SL(d + 1,Z) part

of the U-duality transformation is described by the change of the basis as (1.3) where

Λ ∈ SL(d + 1,Z). We note that U-duality group is give by a product SL(d + 1;Z) ⊲⊳

O(d, d;Z) =: Ed+1(d+1)(Z), where the symbol ⊲⊳ denotes the group generated by the two

non-commuting subgroups (see, for example, a review article [18]). The O(d, d;Z) part

represents the T-duality symmetry. In our formulation, it is realized by the T-duality

relation by Taylor [19].

Actually, for d > 1, the moduli parameters obtained from Higgs VEV’s ~λA are not

enough to realize full U-duality group. The description of U-duality covariant parameters

for super Yang-Mills system is given in the context of BFSS matrix theory [20, 21]. One of

such missing parameters is the NS-NS 2-form flux. We know already that this parameter

can be included in the theory by the redefinition of the 3-algebra [1]. As d getting larger, we

need more kinds of R-R flux also. We give some argument that these extra parameters will

be obtained by changing 3-algebra further, possibly by including contributions of Nambu-

Poisson algebra as [5].

2 Dp-brane action from BLG model with moduli parameters

In this section, we perform more detailed analysis of L-BLG model which is described in

section 5 of [1]. The novelty of the following analysis is to introduce general VEV’s for

the ghost fields which give rise to the nontrivial metric for the torus T d and an extra

coupling constants which are related with some R-R flux on Dp-brane. The action after

Higgs mechanism is summarized in section 2.5. We give also more careful explanation of

the compactification mechanism and the geometry of the Dp-brane worldvolume.

– 3 –
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2.1 BLG Lagrangian and 3-algebra for Dp-brane

The original BLG action is written as [2]

S =

∫

M

d3xL =

∫

M

d3x (LX + LΨ + Lint + Lpot + LCS), (2.1)

LX = −1

2
〈DµXI ,DµXI〉, (2.2)

LΨ =
i

2
〈Ψ̄,ΓµDµΨ〉, (2.3)

Lint =
i

4
〈Ψ̄,ΓIJ [XI ,XJ ,Ψ]〉, (2.4)

Lpot = − 1

12
〈[XI ,XJ ,XK ], [XI ,XJ ,XK ]〉, (2.5)

LCS =
1

2
fABCDAAB ∧ dACD +

i

3
fCDA

GfEFGBAAB ∧ ACD ∧ AEF , (2.6)

where the indices µ = 0, 1, 2 specify the longitudinal directions of M2-branes, I, J,K =

3, . . . , 10 indicate the transverse directions, and the indices A,B,C, . . . denote components

of 3-algebra generators. M is the worldvolume of M2-brane.

The covariant derivative is

(DµΦ(x))A = ∂µΦA + fCDB
AAµCD(x)ΦB (2.7)

for Φ = XI ,Ψ. The 3-bracket for the 3-algebra in BLG model

[TA, TB , TC ] = ifABC
DTD (2.8)

must satisfy the fundamental identity and the invariant metric condition. Note that the

notation is slightly different from the original BLG’s one in order to make the field AµAB

Hermite.

In [1], we made a systematic study of Lorentzian metric 3-algebra which contains d+1

pairs of Lorentzian metric generators (ua, v
a) together with positive-definite generators ei.

We studied a special class of 3-algebra where the generators va are the center of 3-algebra,

namely [va, ⋆, ⋆] = 0, and the generators ua are not produced by the any 3-commutators,

i.e. f⋆,⋆,⋆
ua

= 0. These requirements are necessary if we want to remove the ghost fields by

using the Higgs mechanism in [6, 9]. A general feature for d ≥ 1 is that the gauge fields

(as well as all other fields, because of supersymmetry) become massive by absorbing two

Higgs (ghost) scalar fields.

For finite dimensional 3-algebras, it is not obvious how to interpret these massive fields

in the context of M/string theory. It was also found that BLG models based on known finite

dimensional 3-algebras produce either products of the supersymmetric gauge theories [6–8]

or abelian massive super Yang-Mills systems without interactions [1, 11].

For infinite dimensional case, it was found that there are varieties of possible 3-

algebras and the BLG models associated with them in general have natural interpretation

in M/string theory [1]. For example, while the number of particles becomes infinite, they
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are naturally interpreted as the Kaluza-Klein modes associated with the toroidal com-

pactification. Also, the mass generated by ghosts can be identified with the Kaluza-Klein

mass.

Here we pick up a 3-algebra which produces the worldvolume theory of Dp-brane

(p = d + 2):4

[u0, ua, ub] = 0 , (2.9)

[u0, ua, T
i
~m] = maT

i
~m , (2.10)

[u0, T
i
~m, T j

~n] = mav
aδ~m+~nδij + if ij

kT
k
~m+~n , (2.11)

[T i
~l
, T j

~m, T k
~n ] = −if ijkδ~l+~m+~n

v0 . (2.12)

where a, b = 1, . . . , d, ~l, ~m,~n ∈ Zd and f ijk (i, j, k = 1, . . . ,dim g) is a structure constant

of an arbitrary Lie algebra g which satisfies Jacobi identity. Other 3-commutators are

defined to be zero. The 3-algebra satisfies the fundamental identity. We note that vA

(A = 0, 1, . . . , d) are the center of the 3-algebra and uA do not appear in the output of

3-commutators. This is an essential property of Lorentzian metric 3-algebra to make ghosts

disappear after the Higgs mechanism. The nonvanishing part of the metric is given as

〈uA, vB〉 = δB
A , 〈T i

~m, T j
~n〉 = δijδ~m+~n . (2.13)

We note that this 3-algebra can be regarded as original Lorentzian metric 3-algebra (1.1)

where Lie algebra is replaced by

[ua, ub] = 0, [ua, T
i
~m] = maT

i
~m,

[T i
~m, T j

~n] = mav
aδ~m+~nδij + if ij

kT
k
~m+~n . (2.14)

For d = 1, this is the standard Kac-Moody algebra with degree operator u and the central

charge v and above algebra is its higher loop generalization. Since the original L-BLG

model reduces to super Yang-Mills, one might guess that BLG model based on the 3-

algebra (2.9)–(2.12) should be equivalent to super Yang-Mills whose gauge group is the loop

algebra (2.14).5 It turns out that this is not the case. As we explain below, BLG Lagrangian

contains extra topological terms which can not be reproduced from Yang-Mills action.

2.2 Component expansion

In the remainder of this section, we will derive the BLG action for this 3-algebra. This was

already presented in [1] but the computation is limited to the simplest choice of parameters

and the dependence on the moduli parameter was not clarified. In particular, we will obtain

some “topological” terms such as θ
∫

FF̃ for D3-brane which could not show up for the

simplest choice of the background. Furthermore, in order to obtain this θ term, we must

carefully deal with the total derivative terms which is neglected in [1].

4In [1], more general 3-algebra is considered with the anti-symmetric tensor Cab, i.e. [u0, ua, ub] = CabT
0

~0

instead of eq. (2.9). This tensor is related with the noncommutativity parameter on Dp-brane. In this paper,

we omit this factor for the simplicity of the argument.
5We note that the super Yang-Mills system with loop algebra symmetry is given in section 5.1 of [1].

– 5 –



J
H
E
P
0
6
(
2
0
0
9
)
0
5
3

For the 3-algebra (2.9)–(2.12), we expand various fields as

XI = XI
(i~m)T

i
~m + XIAuA + XI

AvA (2.15)

Ψ = Ψ(i~m)T
i
~m + ΨAuA + ΨAvA (2.16)

Aµ = Aµ(i~m)(j~n)T
i
~m ∧ T j

~n +
1

2
Aµ(i~m)u0 ∧ T i

~m +
1

2
Aa

µ(i~m)ua ∧ T i
~m

+
1

2
Aa

µ u0 ∧ ua + Aab
µ ua ∧ ub + (terms including vA) . (2.17)

Now we will rewrite the BLG action (2.1) as an action for Dp-branes (p = d + 2). More

precisely, if we denote the original membrane worldvolume as M, the worldvolume of Dp-

brane is given by a flat T d bundle over M. The index ~m ∈ Zd which appears in some

components represents the Kaluza-Klein momentum along the T d.

In this geometrical set-up, each bosonic components plays the following roles:

• XI
(i~m) : These are splitted into three groups. Some are the collective coordinates which

describe the embedding into the transverse directions, others are the gauge fields on

the worldvolume, and the other is the degree of freedom which can be absorbed when

M-direction disappears. The concrete expression is eq. (2.55).

• XIA : Higgs fields whose VEV’s determine either the moduli of T d or the compacti-

fication radius in M-direction.

• Aµ(i~m) : gauge fields along the membrane worldvolume M.

• Aa
µ : a connection which describes the fiber bundle T d → M. The equation of motion

implies that it is always flat ∂[µAa
ν] = 0.

The other bosonic components become Lagrange multiplier or do not show up in the action

at all. In the following, we set Aa
µ = Aab

µ = 0 for simplicity.

2.3 Solving the ghost sector

The components of ghost fields X and Ψ appear in the action only through the follow-

ing terms:

Lgh = −(DµXI)uA
(DµXI)vA +

i

2

(
Ψ̄uA

ΓµDµΨvA + Ψ̄vAΓµDµΨuA

)
(2.18)

where

(DµXI)uA
= ∂µXIA ,

(DµXI)v0 = ∂µXI
0 + ima(A

a
µ(i~m)X

I
(i,−~m) + Aµ(i~m)(i,−~m)X

Ia)

−f ijkAµ(i~m)(j ~m)X
I
(k,−~m−~n) ,

(DµXI)va = ∂µXI
a − ima(Aµ(i~m)X

I
(i,−~m) + Aµ(i~m)(i,−~m)X

I0) , (2.19)

and similar for Ψ. The variation of XI
A and ΨA always give the free equations of motion

for XIA and ΨA, namely

∂µ∂µXIA = 0 , Γµ∂µΨA = 0 . (2.20)

– 6 –
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By introducing extra gauge fields CI
µA and χA through [15, 16]

Lnew = CI
µA∂µXIA − χAΨ̄A , (2.21)

one may modify the equations of motion for XIA and ΨA to

∂µXIA = 0 , ΨA = 0 , (2.22)

and absorb the ghosts XI
A and ΨA by gauge fixing. This is how the ghost fields can be

removed in [6–8].

The equations of motion for XIA (2.22) imply that they are constant vectors in R8.

We fix these constants as

~XA = ~λA ∈ Rd+1 ⊂ R8 . (2.23)

In [6–8], there is only one ~λ = ~λ0 which specifies the M-direction compactification radius.

This time, we have extra VEV’s ~λa which give the moduli of the toroidal compactifica-

tion T d.

In the following, we prepare some notations for the later discussion. We write the dual

basis to ~λA as ~πA, which satisfy

~λA · ~πB = δA
B . (2.24)

We introduce a projector into the subspace of R8 which is orthogonal to all ~λA as

P IJ = δIJ −
∑

A

λIAπJ
A , (2.25)

which satisfies P 2 = P . We define ‘metric’ as

GAB = ~λA · ~λB , (2.26)

where λIA play the role of vierbein. Using this metric, ~π0 can be written as

~π0 =
1

G00
~λ0 − G0a

G00
~πa , (2.27)

and from now we use {~λ0, ~πa} as the basis of Rd+1 spanned by ~λA. Note that ~λ0 ⊥ ~πa for all

a. Our claim that the Rd+1 is compactified on T d+1 will be deduced from the Kaluza-Klein

mass which is generated by the Higgs mechanism. This will be demonstrated below.

Comments on Higgs potential. Since ~XA plays the role of Higgs fields, it is natural to

wonder if one may introduce a potential for them and fix the value of VEV’s. This seems

to be physically relevant since they are related to the moduli of torus. One naive guess is to

add a potential −V ( ~XA) to the action. Since the SUSY and gauge transformations of ~XA

are trivial, this potential breaks neither SUSY nor gauge symmetry. However, the kinetic

term is given in the mixed form ∂ ~XA∂ ~XA, the potential does not fix ~XA but physically

irrelevant ~XA.

– 7 –
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2.4 Derivation of Dp-brane action

We finally rewrite the BLG action (2.1) in terms of 3-algebra components and by putting

VEV’s to ghost fields XIA and ΨA.

Kinetic terms for XI and Ψ. The covariant derivative becomes, after the assignment

of VEV’s to ghosts,

(DµXI)(i~m) = (D̂µXI)(i~m) + A′
µ(i~m)λ

I0 − imaAµ(i~m)λ
Ia (2.28)

where

(D̂µXI)(i~m) = ∂µXI
(i~m) + f jk

iAµ(k~n)X
I
(j,~m−~n) , (2.29)

A′
µ(i~m) = −imaA

a
µ(i~m) + f jk

iAµ(j,~m−~n)(k~n) . (2.30)

We decompose this formula into the components into the orthogonal spaces R7−d and Rd+1

by using the projector P IJ as

(DµXI)(i~m) = P IJ(D̂µXJ)(i~m) +
∑

A

λIA(FµA)(i~m) (2.31)

where

(Fµ0)(i~m) = ~π0 · (D̂µ
~X)(i~m) + A′

µ(i,~m)

=
1

G00
D̂µ(~λ0 · ~X)(i~m) −

G0a

G00
D̂µ(~πa · ~X)(i~m) + A′

µ(i~m) , (2.32)

(Fµa)(i~m) = D̂µ(~πa · ~X)(i~m) − imaAµ(i~m) . (2.33)

We will rewrite ~πa · ~X as Aa below, since they play the role of gauge fields along the fiber

T d as we mentioned. Fµa will be regarded as the field strength with one leg in M and

the other in T d. Fµ0 seems to be the field strength in a similar sense with one leg in M-

direction. However, the gauge field A′
µ(i~m) is an auxiliary field as we see below, and after

it is integrated out, Fµ0 will completely disappear from the action. In this sense, Fµ0 do

not have any geometrical meaning. We suspect, however, that it may give a hint to keep

the trace of the compactification of M-theory to type IIA superstring theory.

Finally, using eq. (2.31), the kinetic term for XI becomes

LX = −1

2
D̂µXI

(i~m)P
IJD̂µXJ

(i,−~m) −
1

2
GABFµA(i~m)FµB(i,−~m) . (2.34)

Similarly, the kinetic term for Ψ becomes

LΨ =
i

2
Ψ̄(i~m)Γ

µD̂µΨ(i,−~m) . (2.35)

– 8 –
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Chern-Simons term and integration of A′. The Chern-Simons term is written as

LCS =
1

2

(
A′

(i~m) ∧ dA(i,−~m) + A(i,−~m) ∧ dA′
(i~m)

)

−if ijkA′
(i~m) ∧ A(j~n) ∧ A(k,−~m−~n) , (2.36)

or, up to the total derivative terms,

LCS =
1

2
A′

(i~m) ∧ F(i,−~m) + (total derivative) , (2.37)

where

Fµν(i~m) = ∂µAν(i~m) − ∂νAµ(i~m) + f jk
iAµ(j~n)Aν(k,~m−~n) . (2.38)

Since the gauge field A′ shows up only in LCS and LX , one may algebraically integrate

over it. Variation of A′ gives the equation of motion

A′
µ(i,~m) = − 1

G00
D̂µ(~λ0 · ~X)(i~m) +

G0a

G00
D̂µAa(i~m) −

G0a

G00
(Fµa)(i~m)

− 1

2G00
ǫµνλ(Fνλ)(i~m) , (2.39)

where Aa := ~πa · ~X. By putting back this value to the original action (2.36),

LX + LCS = −1

2
D̂µXIP IJD̂µXJ − 1

4G00
(Fνλ)2 − 1

2
G̃abFµaFµb

− G0a

2G00
ǫµνλFµaFνλ + Ltd , (2.40)

where

G̃ab := Gab − Ga0Gb0

G00
, (2.41)

Ltd = − 1

2G00
ǫµνλ∂µ

[(
−iD̂ν(~λ

0 · ~X) +
1

2
ǫνρσFρσ

)
Aλ

]
. (2.42)

Here we omit the indices (i~m) for simplicity. Note that the redefinition of the metric

Gab → G̃ab is very similar to that of T-duality transformation in M-direction. The term

Ltd is total derivative which does not vanish in the limit G0a → 0. Since we know that the

total derivative terms do not play any role for the case G0a = ~λ0 · ~λa = 0, we will neglect

them in the following. In a sense, this is equivalent to redefine the BLG action,

SBLG =

∫
d3x (LBLG − Ltd) , (2.43)

where LBLG is the original BLG Lagrangian. On the other hand, while the fourth term

in eq. (2.40) is also total derivative, we must not neglect it. This is because this term is

proportional to G0a and becomes essential to understand the U-duality. For d = 1 case,

it becomes the θ term of the super Yang-Mills action and it should be involved in the

S-duality transformation in the complex coupling constant τ = C0 + ie−φ. We note that

this is the term which does not show up if we analyze the Yang-Mills system with loop

algebra symmetry (2.14).
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Kaluza-Klein mass by Higgs mechanism. At this point, it is easy to understand

how compactification occurs after the Higgs mechanism. Note that in the definition of

Fµa (2.33), we have a factor with ma in front of Aµ(i~m). In the language of D2-brane

worldvolume, it gives rise to the mass term

− 1

2
gabmambAµ(i~m)A

µ
(i,−~m) , where gab := G00G̃ab, (2.44)

for Aµ(i~m). We will also see that exactly the same mass term exists for all fields with

index ~m. It is natural to regard these terms as the Kaluza-Klein mass terms for the

compactification on a torus T d.

In order to be more explicit, we will use the T-dual picture [19] in the following.

We identify the various fields with index ~m with the higher 3 + d dimensional fields by

the identification

Φ~m(x) → Φ̃(x, y) :=
∑

~m

Φ~m(x)ei~m~y (2.45)

where ya ∈ [0, 2π] (a = 1, . . . , d) are coordinates of T d. Fµa can be identified with the field

strength by

(F̃µa)i = D̂µÃai −
∂

∂ya
Ãµi (2.46)

where Ãai(x, y) := ~πa · ~̃Xi(x, y). The kinetic terms of gauge fields in eq. (2.40) imply that

we have a metric in ~y direction as

ds2 = ηµνdxµdxν + gab dyadyb , where gab := (gab)−1 . (2.47)

When ~λA are all orthogonal, one may absorb the metric gab in the rescaling of ya as

y′a = (|~λ0||~λa|)−1ya. Since ya has the radius 1, y′a has the radius 1/|~λ0||~λa|. This is

consistent with our previous analysis [1]. In this scaling ya → y′a, the kinetic terms for

gauge fields in eq. (2.40) become

− 1

4G00

[
(Fνλ)2 + 2(Fµa)2

]
, (2.48)

which is also consistent with our previous study for d = 1.

We note that the use of Kac-Moody algebra as the symmetry of the Kaluza-Klein

mode is not new. See, for example, [22]. Here the novelty is to use the Higgs mechanism

to obtain the Kaluza-Klein mass.

Worldvolume is a flat fiber bundle. So far, since we put Aa
µ = 0 for the simplicity

of the argument, the worldvolume of Dp-brane is the product space M× T d. In order to

see the geometrical role of Aa
µ , let us keep it nonvanishing for a moment. The covariant

derivative (2.28) get an extra term, maA
a
µ(x)XI

(i~m), which becomes on M× T d,

iAa
µ(x)

∂

∂ya
X̃I

i (x, y) . (2.49)

– 10 –



J
H
E
P
0
6
(
2
0
0
9
)
0
5
3

Aa
µ turns out to be the gauge field for the gauge transformation from those of BLG:

δX̃I
i (x, y) = iγa(x)

∂

∂ya
X̃I

i (x, y) . (2.50)

The existence of the gauge coupling implies that the worldvolume is not the direct product

M× T d but a fiber bundle Y :

T d // Y

��

M
where T d act as the translation of ya.

The kinetic term for the connection comes from the Chern-Simons term:

Lfiber = ǫµνλCµa∂νA
a
λ , Cµa :=

∑

~n

naAµ(i~n)(i,−~n) . (2.51)

Since Cµa does not appear in other place in the action, its variation gives,

∂[µAa
ν] = 0 . (2.52)

Therefore Y must be a flat bundle as long as we start from BLG model.

There seems to be various possibilities to relax this constraint to the curved back-

ground. One naive guess is to replace Lfiber to

L′
fiber = ǫµνλCµa

(
∂νAa

λ − 1

2
F

a(0)
νλ

)
, (2.53)

for an appropriate classical background F
a(0)
νλ .

Interaction terms. The compactification picture works as well in the interaction terms.

For the fermion interaction term Lint, we use

[X [I ,XJ ],Ψ](i,−~m) = −maλ
[I0λJ ]aΨ(i,−~m) + if jk

iλ
[I0X

J ]
(j~n)Ψ(k,−~m−~n) (2.54)

and from eq. (2.27),

XI = P IJXJ + λIA(~πA · ~X)

= P IJXJ +
1

G00
λI0(~λ0 · ~X) +

(
−G0a

G00
λI0 + λIa

)
Aa . (2.55)

Then Lint can be written as

Lint =
i

4
Ψ̄(i~m)(ΓIJλI0λJa)

(
−maΨ(i,−~m) + if jk

iAa(j~n)Ψ(k,−~m−~n)

)

+
i

4
Ψ̄(i~m)(ΓIJλI0)

(
if jk

iP
JKXK

(j~n)Ψ(k,−~m−~n)

)

=

∫
ddy

(2π)d
√

g

(
i

2
˜̄ΨΓaD̂aΨ̃ +

i
√

G00

2
˜̄ΨΓI [P

IJX̃J , Ψ̃]

)
, (2.56)
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where g = det gab , D̂aΨ̃ := ∂aΨ̃ − i[Ãa, Ψ̃] and

Γa :=
i

2
ΓIJλI0λJa , ΓJ :=

1

2
√

G00
ΓIJλI0 , (2.57)

which satisfy {Γa,Γb} = gab and {ΓI ,ΓJ} = δIJ .

On the other hand, the potential term for the boson Lpot is the square of a 3-com-

mutator:

[XI ,XJ ,XK ](i,~m) = maλ
[I0λJaX

K]
(i,~m) + if jk

iλ
[I0XJ

(j,~n)X
K]
(k,~m−~n). (2.58)

where the indices I, J,K are antisymmetrized. The square of the first term gives

(
maλ

[I0λJaX
K]
(i,~m)

)2
= 6gabmambX

I
~mP IJ

~m XJ
−~m , (2.59)

where

P IJ
~m := δIJ − |~λ0|2λI

~mλJ
~m + |λ~m|2~λI0~λJ0 − (~λ0 · ~λ~m)(λI0λJ

~m + λJ0λI
~m)

|~λ0|2|~λ~m|2 − (~λ0 · ~λ~m)2
,

~λ~m := ma
~λa , (2.60)

which satisfy

P IJ
~m λJ0 = P IJ

~m λJ
~m = 0 , P 2

~m = P~m . (2.61)

The mixed term

λ[I0λJ
~mX

K]
(i~m) · f jk

iλ
[I0XJ

(j,~n)X
K]
(k,−~m−~n) (2.62)

vanishes and does not contribute to the action. The commutator part is

(if jk
iλ

[I0XJ
(j,~n)X

K]
(k,~m−~n))

2 = 3
(
G00〈[XJ ,XK ]2〉 − 2〈[(~λ0 · ~X),XI ]2〉

)
(2.63)

which is identical to the similar term in [6] and it produces the standard commutator terms.

Using eq. (2.55), these terms can be summarized in the following compact form:

Lpot =

∫
ddy

(2π)d
√

g

(
−1

2
gabD̂aX̃

IP IJD̂bX̃
J − 1

4G00
gacgbdF̃abF̃cd

−G00

4
[P IKX̃K , P JLX̃L]2

)
, (2.64)

where D̂aX̃
I = ∂aX̃

I − i[Ãa, X̃
I ] and F̃ab = ∂aÃb − ∂bÃa − i[Ãa, Ãb].
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2.5 Summary

By collecting all the results in previous subsections, the BLG action (2.1) becomes

L = LA + LFF + LX + LΨ + Lpot + Lint + Ltd , (2.65)

LA = − 1

4G00

∫
ddy

(2π)d
√

g
(
F̃ 2

µν + 2gabF̃µaF̃µb + gacgbdF̃abF̃cd

)
, (2.66)

LFF = − G0a

8G00

∫
ddy

(2π)d
√

g
(
4ǫµνλF̃µaF̃νλ

)
, (2.67)

LX = −1

2

∫
ddy

(2π)d
√

g
(
D̂µX̃IP IJD̂µX̃J + gabD̂aX̃

IP IJD̂bX̃
J
)

, (2.68)

LΨ =
i

2

∫
ddy

(2π)d
√

g ˜̄Ψ
(
ΓµD̂µ + ΓaD̂a

)
Ψ̃ , (2.69)

Lpot = −G00

4

∫
ddy

(2π)d
√

g [P IKX̃K , P JLX̃L]2 , (2.70)

Lint =
i
√

G00

2

∫
ddy

(2π)d
√

g ˜̄ΨΓI [P
IJX̃J , Ψ̃] . (2.71)

It is easy to see that this is the standard Dp-brane action (p = d + 2) on M× T d with the

metric (2.47). Interpretation and implications of this action are given in the next section.

3 Study of U-duality in L-BLG model

3.1 D3-branes case

For d = 1, if we write ~λ0 = ~e 0, ~λ1 = τ1~e
0 + τ2~e

1 (where ~e 0 ·~e 1 = 0, |~e 0| = |~e 1|), the action

for the gauge field is given as

LA + LFF = − 1

4G00

∫
dy

2π

√
g F 2 − G01

8G00

∫
dy

2π
FF̃

= − 1

8π

∫
dy
(τ1

2
FF̃ + τ2F

2
)

(3.1)

where now g = g11 and

F 2 = F̃ 2
µν + 2g11F̃µ1F̃µ1 ,

F F̃ = (4
√

g11 ǫµνλ)F̃µ1F̃νλ . (3.2)

This shows that the action (2.65) in this case is the standard D3-brane action with the

θ term.

Under the SL(2,Z) transformation
(

~λ1

~λ0

)
→
(

a b

c d

)(
~λ1

~λ0

)
, (3.3)

the moduli parameter τ is transformed as,

τ → aτ + b

cτ + d
. (3.4)
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For b = −c = 1, a = d = 0, it gives rise to the standard S-duality transformation τ → −1/τ .

On the other hand, a = d = 1, b = n and c = 0 gives the translation τ → τ + n.

We do not claim that we have proven S-duality symmetry from our model. At the level

of 3-algebra (2.9)–(2.12), there is obvious asymmetry between u0, v
0 and u1, v

1. Neverthe-

less, it is illuminating that the S-duality symmetry can be interpreted in so simple way.

On the other hand, the translation symmetry reduces to the automorphism of the

3-algebra (2.9),

u0 → u0 − nu1 , u1 → u1 ,

v0 → v0 , v1 → v1 + nv0 . (3.5)

It is easy to see that the transformation changes neither 3-algebra nor their metric. It

induces the redefinition the ghost fields as,

XI = XI
u0

u0 + XI
u1

u1 + · · · = XI
u0

(u0 − nu1) + (XI
u1

+ nXI
u0

)u1 + · · · . (3.6)

It implies the transformation ~λ0 → ~λ0 , ~λ1 → ~λ1 + n~λ0 . Of course, at the classical level,

there is no reason that the parameter n must be quantized. It is interesting anyway that

part of the duality transformation comes from the automorphism of 3-algebra.

The T-duality transformation Z2 which interchanges D3- and D2-branes comes from

the different identification of component fields. Namely, we have constructed 4-dimensional

field X̃I(x, y) from the component fields XI
(i~m)(x) by Fourier series (2.45). One may instead

interpret XI
(i~m)(x) as the 3-dimensional field and interpret ~m index as describing open

string mode which interpolate mirror images of a point in T 1 = R/Z. This is the standard

T-duality argument [19].

The relation between the coupling constant and the radius in T-duality transformation

is given as follows. Let us assume for a moment that ~λ0 ⊥ ~λ1 for simplicity. It is well

known [9] that putting a VEV ~Xu0
= ~λ0 means the compactification of M-direction with

the radius

R0 = |~λ0| l3/2
p , (3.7)

where lp is 11-dimensional Planck length. From the symmetry of Xu0
↔ Xu1

, putting

a VEV ~Xu1
= ~λ1 must imply the compactification of another direction with the similar

radius R̃1 = |~λ1| l3/2
p before taking T-duality along ~λ1. At this point, we have D2-brane

worldvolume theory with string coupling

gs = g2
Y M ls = |~λ0|2 ls . (3.8)

where ls is the string length, satisfying l3p = gsl
3
s . In section 2, we obtain D3-brane since

we compactify the ~λ1 direction with radius R̃1 and simultaneously take T-duality for the

same direction. Thus the D3-brane is compactified on S1 with the radius

R1 =
l2s
R̃1

=
l2s

|~λ1|
√

|~λ0|2 l4s

=
1

|~λ0||~λ1|
, (3.9)
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and the string coupling for D3-brane worldvolume theory is

g′s = gs
ls

R̃1

=
|~λ0|
|~λ1|

. (3.10)

This result is consistent with our result [1], as we also discussed in section 2.

To summarize, the U-duality transformation for d = 1 case is

SL(2,Z) ⊲⊳ Z2 , (3.11)

where the first factor is described by the rotation of Higgs VEV’s and the second factor is

described by the different representation as the field theory.

3.2 U-duality for d > 1

We consider M-theory compactified on T d+1 (where d = p − 2). This theory has U-

duality group Ed+1(Z) and scalars taking values in Ed+1/Hd+1 where Hd+1 is the maximal

compact subgroup of Ed+1. See, for example, [20] for detail. We call the space of these

scalars ‘parameter space’ in the following.

In this subsection, we compare the parameters obtained from L-BLG model with those

in the parameter space. We can extract various parameters on Dp-brane from the action

obtained in section 2.5 which are all determined by the Higgs VEV’s ~λA. The first one is

the Yang-Mills coupling:

g2
Y M =

(2π)dG00

√
g

, g := det gab . (3.12)

Secondly, the metric

gab = G00Gab − G0aG0b (3.13)

gives the moduli of the torus T d. Finally, LFF gives a generalization of θ term for d = 1

case. Since the θ term may be regarded as the axion coupling, a natural generalization

for general d is the R-R field C(d−1), which appears in the Dp-brane Lagrangian of string

theory like as C(d−1)∧F ∧F . Such term was discussed in the literature, for example, in [20].

In our set-up in section 2, the existence of such coupling C∧F∧F can be understood as

follows. There the compactification of the M-direction was determined by ~λ0 and we took

T-duality on T d specified by {~λa} = {~λ1, . . . , ~λd}. If G0a = ~λ0 ·~λa 6= 0, we obtain the non-

zero C(0) field, after the compactification of M-direction and the T-duality transformation

along only ya. After taking T-duality in the remaining d − 1 directions on T d too, we

obtain the nonzero C(d−1) field whose nonvanishing component is C1···â···d , where the index

with ˆ should be erased. This compontent of R-R field must interact with gauge fields on

D-brane as ǫµνλ1···dC1···â···dFµνFλa. In our action (2.65), LFF describes this coupling. It

determines the components of C(d−1) as

Câ := C1···â···d =
1

4(2π)d(d − 1)!

G0a

G00

√
g√

gaa
, (3.14)

where no sum is taken on a.
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The number of parameters thus obtained is 1+ d(d+1)
2 + d = (d+1)(d+2)

2 which coincides

with the number of metric GAB = ~λA · ~λB. As is d = 1 case, it is natural to guess the

SL(d + 1,Z) transformation

~λ′A = ΛA
B

~λB , ΛA
B ∈ SL(d + 1,Z) , (3.15)

is related to the first factor of SL(d + 1,Z) ⊲⊳ O(d, d : Z) in U-duality transformation. In

appendix A, we derive the transformation law of these parameters explicitly. They are less

illuminative compared with d = 1 case, however, since these parameters depends on GAB

in a complicated way. Since the number of the parameters is the same, it is straightforward

to obtain the inverse relation, GAB = GAB(g2
Y M , gab, Câ). This combination transforms

linearly under SL(d+1,Z). In this sense, it is possible to claim that SL(d+1,Z) is a part of

the U-duality symmetry and GAB gives the parameter which transforms covariantly under

SL(d + 1,Z). The closure of these parameters under SL(d + 1,Z) was discussed in the

literature, for example, [20].

The parameters obtained from ~λA, however, do not describe the full parameter space to

implement U-duality. In the following, we compare it with the dimensions of the parameter

space. As we see, for d = 1, it correctly reproduces the moduli. The discrepancy of

the number of parameters starts from d > 1. We will explain some part of the missing

parameters is given as the deformation of 3-algebra (2.9).

D3-brane (d = 1). It corresponds to M-theory compactified on T 2. The parameter space

in this case is
(
SL(2)/U(1)

)
× R which gives 3 scalars. They correspond to G00, G01 and

g, in other words, g2
Y M , C1̂ and g11, all of which appear in the D3-brane action (2.65).

D4-branes (d = 2). It corresponds to M-theory compactified on T 3. The parameter

space in this case is
(
SL(3)/SO(3)

)
×
(
SL(2)/U(1)

)
which gives 7 parameters. They cor-

respond to Gab, Bab, Φ and Câ which transform in the 3 + 1 + 1 + 2 representations of

SL(2). Φ is dilaton which satisfies eΦ = gs = (2π)p−2lp−3
s g2

Y M , and Câ is R-R 1-form (or

p − 3 form) field defined in eq. (3.14).

Bab is NS-NS 2-form field which we have not discussed so far. As we commented in

the footnote 4, such parameters were introduced in section 5.2 of [1] as the deformation of

the 3-algebra, [u0, ua, ub] = BabT
0
~0
, · · · . It describes the noncommutativity on the torus

along the line of [23]. We have not used this generalized algebra for the simplicity of the

computation but can be straightwardly included in the L-BLG model. It is interesting that

some part of moduli is described as dynamical variable (“Higgs VEV”) while the other part

comes from the modification of 3-algebra which underlies the L-BLG model.

D5-branes (d = 3). It corresponds to M-theory compactified on T 4. The parameter

space in this case is SL(5)/SO(5) which gives 14 parameters. They correspond to Gab, Bab,

Φ, Câ and Câb̂ĉ which transform in the 6 + 3 + 1 + 3 + 1 representations of SL(3).

Câb̂ĉ := C1···â···̂b···ĉ···d is R-R 0-form (or p − 5 form) field which causes the interaction

like as ǫµνλ1···dCâb̂ĉFµνFλaFbc or ǫµνλ1···dCâb̂ĉFµaFνbFλc . In the context of 3-algebra, there

is a room to include such coupling [1]. It is related to the 3-algebra associated with Nambu-

Poisson bracket. As shown in [5], the worldvolume theory becomes not the super Yang-Mills
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but instead described by self-dual 2-form field which describes the M5-brane.6 The precise

statement on the moduli becomes obscure in this sense.

To see U-duality, we must also consider the transformation of Bab and Câb̂ĉ. Especially,

the interchange Bab ↔ Câ and Câb̂ĉ ↔ Φ means S-duality.

D6-branes (d = 4). It corresponds to M-theory compactified on T 5. The parameter

space in this case is SO(5, 5)/
(
SO(5) × SO(5)

)
which gives 25 scalars. They correspond

to Gab, Bab, Φ, Câ and Câb̂ĉ which transform in the 10 + 6 + 1 + 4 + 4 representation of

SL(4). To see U-duality, we must also consider the transformation of Bab and Câb̂ĉ.

D7-branes (d = 5). It corresponds to M-theory compactified on T 6. The parameter

space in this case is E6/USp(8) which gives 42 scalars. They correspond to Gab, Bab, Φ,

Câ, Câb̂ĉ and Câb̂ĉd̂ê which transform in the 15+10+1+5+10+1 representations of SL(5).

Câb̂ĉêf̂ is R-R 0-form (or p − 7 form) field which causes the interaction like as ǫµνλ1···d

Câb̂ĉêf̂FµνFλaFbcFef and so on. Note that Câ in this case must be the self-dual 4-form field.

To see U-duality, we must also consider the transformation of Bab, Câb̂ĉ and Câb̂ĉêf̂ .

Especially, the interchange Bab ↔ Câb̂ĉ and Câb̂ĉêf̂ ↔ Φ means S-duality. However we don’t

know the way to introduce the field Câb̂ĉêf̂ at this moment in time, so this discussion may

be difficult.

D8-branes (d = 6). It corresponds to M-theory compactified on T 7. The parameter

space in this case is E7/SU(8) which gives 70 scalars. They correspond to Gab, Bab, Φ,

Câ, Câb̂ĉ and Câb̂ĉêf̂ which transform in the 21 + 15 + 1 + 6 + 20 + 6 representations of

SL(6), plus one additional scalar Babcefg which is the dual of NS-NS 2-form ∗B(2). To see

U-duality, we must consider the transformation of all these fields.

D9-branes (d = 7). It corresponds to M-theory compactified on T 8. The parameter

space in this case is E8/SO(16) which gives 128 scalars. They correspond to Gab, Bab,

Φ, Câ, Câb̂ĉ, Câb̂ĉêf̂ and Câb̂ĉêf̂ ĝĥ which transform in the 28 + 21 + 1 + 7 + 35 + 21 + 1

representations of SL(7), plus 14 additional scalars Babcefg and Cµa. This Cµa is R-R 2-

form field which has legs belong to one of worldvolume coordinates xµ and one of torus

coordinates ya.

To see U-duality, we must consider the transformation of all these fields. However we

don’t know the way to introduce the field Câb̂ĉêf̂ and Câb̂ĉêf̂ ĝĥ at this moment in time, so

this discussion may be very difficult.

4 Conclusion and discussion

In this paper, we have presented a detailed derivation of Dp-brane action from BLG model.

The VEV’s of ghost fields ~λA give the moduli of torus T d (d = p − 2) gab, the coupling

constants gY M of super Yang-Mills and the R-R (p− 3)-form field Câ through the ‘metric’

GAB = ~λA · ~λB. For D3-branes (d = 1), the parameters thus obtained are enough to

6In order to satisfy the fundamental identity, Nambu-Poisson bracket must be equipped on a 3-

dimensional manifold. So, in this case, we must choose the specific T 3 where Nambu-Poisson bracket

is defined from the whole compactified torus T 4.
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realize full Montonen-Olive duality group SL(2,Z) through the linear transformation on ~λA.

Moreover, some part of the symmetry is actually the automorphism of 3-algebra. For higher

dimensional case d > 1 (Dp-branes with p > 3), these parameters are enough to implement

a subgroup of U-duality transformation, SL(d + 1,Z), which acts linearly on ~λA. The

transformations of various parameters can be determined through the linear transformation

of the metric GAB . In order to realize the full U-duality group, however, they are not

enough. We argue that one of the missed parameters, NS-NS 2-form background, can be

introduced through the deformation of the 3-algebra. For higher d, we need extra R-R

background which we could not succeed to explain in the context of L-BLG models so

far. One possibility may be to use the coupling constants of Nambu-Poisson bracket which

gives rise to self-dual 2-form field on the worldvolume instead of super Yang-Mills.

There are a few directions for the futher development from current work. One direction

is to understand the higher d case in more detail. For higher d, we have to think more

carefully on the fundamental degree of freedom. In some cases, the gauge theory should be

replaced by 2-form fields, and sometimes by strings. We hope that the BLG description of

M5-brane [5] gives an essential hint.

It is also interesting to derive the U-duality symmetry from ABJM model. While some

work have been done in [14] for D3-brane, it may be interesting how to incorporate the

loop algebras in ABJM context which would help us to go beyond D3. As we explained

here, the loop algebra is suitable symmetry to describe the Kaluza-Klein modes.

Another interesting direction is to describe the curved background or D-branes from

L-BLG model. As we already explained in the text, as long as we start from BLG model,

we arrive at a flat background. This is natural since we have maximal supersymmetry. If,

however, one modifies the action slightly (a naive discussion is given in the text), there

is more room to incorporate various degrees of freedom. Such modification of the model

seems essential to understand various M-brane dynamics.
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A SL(d + 1, Z) transformations on Dp-branes

In this appendix, we compute the transformation law for the moduli parameters under

SL(d + 1,Z) transformation (3.15). SL(d + 1,Z) is generated by the following two kinds of
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(d + 1) × (d + 1) matrices:

S(i, j) :





ΛA
B = δA

B (for A,B 6= i, j) ,
(

Λi
i Λi

j

Λj
i Λj

j

)
=

(
0 1

−1 0

)
.

T (i, j;n) :





ΛA
B = δA

B (for A,B 6= i, j) ,
(

Λi
i Λi

j

Λj
i Λj

j

)
=

(
1 0

n 1

)
.

where i, j = 0, 1, . . . , d (i < j) and n ∈ Z. Obviously, S(i, j) is a generalization of S-duality

transformation and T (i, j;n) is the generalization of translation generator.

(I) Λ = S(0, i) (i 6= 0). This transformation interchanges ~λ0 and ~λi, i.e. M-direction and

one of the torus directions. It is a generalization of S-duality transformation for d = 1 case.

G0A and gab are transformed as

G′00 = Gii , G′0i = −G0i , G′0a = Gia ,

g′ii = gii, g′ia = −(GiiG0a − Gi0Gia) , g′ab = GiiGab − GiaGib , (A.1)

for a, b 6= 0, i. In the simple case of G0a = G0i = Gia = 0,

g2
Y M =

√
G00

Gii

(2π)d

(G00)(d−1)/2

1√
Ĝi

→ g
′2
Y M =

√
Gii

G00

(2π)d

(Gii)(d−1)/2

1√
Ĝi

, (A.2)

where Ĝi is the minor determinant of Gab excluding the i’th row and column. On the other

hand, Câ remains zero in this simple case.

(II) Λ = T (0, i;n) (i 6= 0). This transformation shifts the direction as ~λ0 → ~λ0 and
~λi → ~λi + n~λ0, and should be a generalization of T-duality transformation. G0A and gab

are transformed as

G′00 = G00 , G′0i = G0i + nG00 , G′0a = G0a ,

g′ii = gii , g′ia = gia , g′ab = gab , (A.3)

for a, b 6= 0, i. So the coupling constant g2
Y M is invariant under this transformation. On

the other hand, one component of R-R field C(d−1) is shifted as in the D3-branes case,

Cî → C ′
î

= Cî +
n

4(2π)d(d − 1)!

√
g√
gii

, (A.4)

while all the other components remain the same.
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(III) Λ = S(i, j) (i, j 6= 0). This transformation interchanges ~λi and ~λj and should make

no physical change. In fact,

G′00 = G00 , G′0i = G0j , G′0j = −G0i ,

g′ii = gjj , g′ij = −gji , g′ji = −gij , g′jj = gii , (A.5)

and other G0a and gab remain the same. The coupling constant g2
Y M is invariant under

this transformation. The components of C(d−1) is shuffled by the interchange of the basis

{~λa}, but this doesn’t mean any physical changes.

(IV) Λ = T (i, j;n) (i, j 6= 0). This transformation shifts the torus direction as ~λi → ~λi

and ~λj → ~λj + n~λi. In this case, G0A and gab are transformed as

G′00 = G00 , G′0j = G0j + nG0i , G′0a = G0a ,

g′jj = gjj + 2ngji + n2gii , g′ja = gja + ngia , g′ab = gab , (A.6)

for a, b 6= 0, j. Since
√

g (or the volume of T d) remains the same, g2
Y M is invariant under

this transformation. The components of C(d−1), just as in the case of S(i, j), is effected by

the transformation of the basis {~λa}, but it is not physically meaningful.

As we discussed in section 3.2, the transformation laws are somewhat complicated,

since the parameters g2
Y M and Câ depends on G00 and G0a in complicated way. So if we

want to see concisely the correspondence between subgroup of U-duality SL(d + 1,Z) and

transformation of VEV’s (3.15), we must notice the transformation of GAB = ~λA · ~λB . In

fact, GAB is the linear realization of SL(d+1,Z) transformation (3.15), and the parameters

g2
Y M and Câ transform complexly through this covariant transformation of GAB .
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